Isomorphic factorization, the Kronecker product and the line digraph

نویسندگان

  • Yuuki Tanaka
  • Hiroyuki Kawai
  • Yukio Shibata
چکیده

In this paper, we investigate isomorphic factorizations of the Kronecker product graphs. Using these relations, it is shown that (1) the Kronecker product of the d-out-regular digraph and the complete symmetric digraph is factorized into the line digraph, (2) the Kronecker product of the Kautz digraph and the de Bruijn digraph is factorized into the Kautz digraph, (3) the Kronecker product of binary generalized de Bruijn digraphs is factorized into the binary generalized de Bruijn digraph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the structure of the adjacency matrix of the line digraph of a regular digraph

We show that the adjacency matrix M of the line digraph of a d-regular digraph D on n vertices can be written as M = AB, where the matrix A is the Kronecker product of the all-ones matrix of dimension d with the identity matrix of dimension n and the matrix B is the direct sum of the adjacency matrices of the factors in a dicycle factorization of D.

متن کامل

Cayley Line Graphs of Transitive Groupoids

The line digraph of the Cayley color graph of a transitive groupoid can be colored so that the groupoid of partial automorphisms is isomorphic to a semidirect product of the original groupoid.

متن کامل

Isomorphic components of Kronecker product of bipartite graphs

Weichsel (Proc. Amer. Math. Soc. 13 (1962), 47-52) proved that the Kronecker product of two connected bipartite graphs consists of two connected components. A condition on the factor graphs is presented which ensures that such components are isomorphic. It is demonstrated that several familiar and easily constructible graphs are amenable to that condition. A partial converse is proved for the a...

متن کامل

Kronecker Factorization for Speeding up Kernel Machines

In kernel machines, such as kernel principal component analysis (KPCA), Gaussian Processes (GPs), and Support Vector Machines (SVMs), the computational complexity of finding a solution is O(n), where n is the number of training instances. To reduce this expensive computational complexity, we propose using Kronecker factorization, which approximates a positive definite kernel matrix by the Krone...

متن کامل

Kronecker Square Roots and the Block Vec Matrix

Using the block vec matrix, I give a necessary and sufficient condition for factorization of a matrix into the Kronecker product of two other matrices. As a consequence, I obtain an elementary algorithmic procedure to decide whether a matrix has a square root for the Kronecker product. Introduction My statistician colleague, J.E. Chacón, asked me how to decide if a real given matrix A has a squ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2007